AI时代的代码架构:如何设计让AI更好编程的系统

前言

在探索Claude Code辅助编程的过程中,我逐渐意识到一个核心问题:传统的软件架构设计思想,可能并不适合AI时代。

传统工程学追求代码复用、模块化、可维护性——这些当然重要。但在AI能够快速生成大量代码的今天,我认为代码本身变得cheap了,真正昂贵的是AI的注意力。

基于这个核心洞察,我设计了一套专门为AI编程优化的架构方案。本文将详细阐述这个架构的思想、设计原则和最佳实践。

核心洞察:代码是Cheap的

传统时代的成本结构

在传统软件开发中:

  • 编写代码:昂贵(需要资深工程师、耗时)
  • 复制代码:廉价(Ctrl+C/Ctrl+V)
  • 维护代码:昂贵(理解成本、耦合风险)

所以传统工程学强调:

  • ✅ DRY原则(Don't Repeat Yourself)
  • ✅ 代码复用
  • ✅ 统一抽象
  • ✅ 提前设计(过度设计)

AI时代的成本结构

在AI辅助编程中:

  • 代码是cheap的:AI生成代码极快(几秒钟生成几百行)
  • module随时可以替换:没搞好就再做一个,代价很低
  • 完全不需要提前过度设计:让实际需求驱动架构演化
  • AI的上下文窗口:昂贵(有限的注意力)
  • AI理解复杂系统:困难(容易遗漏细节)

新的成本函数:

总成本 = AI生成代码的时间(低)
       + 人类review的时间(中)
       + AI修改迭代的时间(高)
       + 系统复杂度导致的AI错误率(极高)

结论:在AI时代,应该牺牲代码复用来换取AI注意力的聚焦


深入理解:为什么要牺牲代码复用?

让我用具体例子说明这个观点。

传统方式:追求代码复用

场景:统一错误处理

// include/common/error.h
typedef struct {
    int code;
    char message[256];
    void* context;      // 通用的上下文
    int context_size;
} Error;

void error_handle(Error* err);  // 超级通用的错误处理

// 所有module都用这个Error
void network_send(Network* self, const char* data) {
    if (send_failed) {
        Error err = {
            .code = ERR_NETWORK,
            .context = self->internal_state,
            .context_size = sizeof(self->internal_state)
        };
        error_handle(&err);  // 复用通用处理
    }
}

传统优势

  • ✅ 只写一次错误处理逻辑
  • ✅ 统一的错误格式
  • ✅ 易于维护

传统成本

  • 需要设计"万能"的Error结构
  • 需要考虑所有使用场景
  • 人类工程师能理解这个复杂抽象

AI时代的问题

让AI写network_send时:

AI的思维过程:
1. 需要处理错误
2. 用Error结构
3. Error有哪些字段?code、message、context、context_size...
4. context是什么类型?void*?
5. 需要设置context_size吗?多大?
6. 有初始化函数吗?
7. 错误码是多少?
8. 要检查NULL吗?
...(AI注意力被分散到10个细节上)

AI实际生成(很可能出错):

void network_send(Network* self, const char* data) {
    if (send_failed) {
        Error err;  // ❌ 忘记初始化
        err.code = 1000;
        strcpy(err.message, "send failed");  // ❌ 忘记检查长度
        // ❌ 忘记设置context
        error_handle(&err);  // ❌ 可能段错误
    }
}

问题:AI注意力被分散到Error结构的细节上,核心逻辑反而出错。

AI方式:牺牲代码复用

// 不设计通用的Error结构

// src/network/impl.c
void network_send(Network* self, const char* data) {
    if (send_failed) {
        // 简单直接,网络模块自己的错误处理
        fprintf(stderr, "[network] send failed: %s\n", strerror(errno));
        if (self->error_callback) {
            self->error_callback("send failed");
        }
    }
}

// src/storage/impl.c
void storage_write(Storage* self, const char* data) {
    if (write_failed) {
        // 存储模块自己的错误处理(完全不同)
        fprintf(stderr, "[storage] write failed: %s\n", strerror(errno));
        if (self->retry_count < 3) {
            self->retry_count++;
            storage_write(self, data);  // 自己的重试逻辑
        }
    }
}

AI生成这个

AI的思维过程:
1. 需要处理错误
2. fprintf打印
3. 调用回调(如果有)
4. 完成

AI只需要关注3个细节,专注度高!

成本对比

传统方式(追求复用):

设计通用Error:4小时
AI出错率:30%
人类review:每个module 30分钟
修复时间:20分钟 × 3轮 = 60分钟

10个module总成本:4 + 15 = 19小时

AI方式(牺牲复用):

设计通用Error:0小时
AI出错率:5%
人类review:每个module 5分钟
修复时间:5分钟 × 1轮 = 5分钟

10个module总成本:0 + 1.6 = 1.6小时

代码重复:每个module都写fprintf(但没关系!)

节省时间:17小时!

"牺牲代码复用"的真正含义

不是

  • ❌ 随意复制粘贴
  • ❌ 不做任何抽象
  • ❌ 写烂代码

而是

  • ✅ 用代码重复换取逻辑简单
  • ✅ 用更多代码行换取AI理解成本低
  • ✅ 用手工维护换取AI出错率低

类比

这就像:

传统时代(手工制作家具):

  • 用精密的模具(通用抽象)
  • 一次设计,批量生产
  • 成本:设计贵,生产便宜

AI时代(3D打印):

  • 不需要精密模具
  • 每个产品单独打印
  • 成本:设计便宜,生产也便宜
  • 宁愿多打印几次,也不设计复杂模具

架构设计:依赖倒置 + 零循环依赖

设计目标

  1. 零循环依赖:AI不需要理解复杂的依赖关系
  2. 清晰的边界:每个模块的职责单一明确
  3. 可组合性:像搭积木一样组装复杂系统
  4. 可测试性:每个模块可以独立测试

目录结构设计

project/
├── include/              # 公共接口层(零依赖区)
│   ├── common_types.h   # POD数据结构
│   ├── logger.h         # 抽象接口
│   ├── network.h
│   ├── storage.h
│   └── ...
├── src/                 # 实现层
│   ├── logger/          # 实现logger.h
│   │   ├── impl.c
│   │   └── internal.h
│   ├── network/
│   └── storage/
└── api.h                # 唯一对外头文件

依赖关系图

         ┌─────────────────┐
         │     api.h       │  ← 最底层(对外窗口)
         │   (组合接口)     │
         └────────┬─────────┘
                  ↑ 依赖
         ┌────────┴─────────┐
         │    include/      │  ← 第二层(抽象接口层)
         │  - POD数据结构    │
         │  - 抽象接口定义   │
         └────────┬─────────┘
                  ↑ 依赖
         ┌────────┴─────────┐
         │   src/module*/   │  ← 第三层(实现层)
         └──────────────────┘

关键约束:

  • include/*.h 绝对禁止互相包含
  • src/module*/ 只依赖include/,不能依赖其他module
  • api.h 组合需要的接口对外暴露

三个关键设计问题

问题1:Module间如何通信?

传统困惑:既然module不能互相依赖,那怎么协作?

答案:所有通信接口也在include/里定义为抽象。

// include/event_bus.h
typedef struct EventBus EventBus;
void event_bus_publish(EventBus*, const char* topic, void* data);
void event_bus_subscribe(EventBus*, const char* topic,
                         void (*callback)(void*));

// src/logger/impl.c
#include "event_bus.h"
#include "logger.h"

void logger_init(Logger* self, EventBus* bus) {
    event_bus_subscribe(bus, "message.received", log_callback);
}

// src/network/impl.c
#include "event_bus.h"
#include "network.h"

void network_on_message(Network* self, const char* msg) {
    event_bus_publish(self->event_bus, "message.received", (void*)msg);
}

依赖倒置原则

  • 高层模块和低层模块都依赖抽象(include/
  • 抽象不依赖具体实现
  • 实现依赖抽象

问题2:数据结构放在哪里?

困惑:如果需要传递复杂结构,放哪里会打破零依赖原则?

答案:纯POD(Plain Old Data)结构可以放include/,甚至放api.h

// include/common_types.h
typedef struct {
    const char* method;
    const char* url;
    const char* body;
} HttpRequest;

typedef struct {
    int code;
    const char* message;
} HttpResponse;

为什么不会循环依赖?

  • POD结构只包含基本类型、指针、数组
  • 不include其他头文件
  • 即使多个接口include它,也是树状依赖,不会循环

注意:带函数指针的结构也算"数据结构",可以放include/

// include/observer.h
typedef struct {
    void (*on_message)(const char* msg);
    void (*on_error)(int error_code);
} ObserverCallbacks;

问题3:何时拆分Module?

困惑:拆分的粒度如何掌握?多少代码算太复杂?

答案:没有固定行数标准,看AI出错率

判断指标:

  1. 编译错误率

    AI第一次生成 → 编译通过
    如果通过率 < 70%,说明太复杂了
  2. 修改轮次

    AI生成 → 人类review → 指出问题 → AI修改 → 又发现问题...
    如果平均 > 2轮,说明超出了AI注意力范围
  3. 常见错误信号

    • ❌ 忘记NULL检查
    • ❌ 忘记释放内存
    • ❌ 边界条件遗漏
    • ❌ 错误处理不完整

本质原因:AI的注意力被核心逻辑占用,细节顾不上。

实验数据(假设):

Module大小代码行数AI编译通过率修改轮次
单体500行50%3-5轮
拆分后150行85%1-2轮

结论:当AI出错率上升时,继续拆分,或者提取成独立子项目。

与微服务架构的深度对比

相似性(理念层面)

维度微服务AI-Native架构
边界定义清晰的业务边界清晰的功能边界
依赖方向通过API互相调用通过抽象接口依赖
独立演进可以独立升级module可独立替换实现
团队协作不同团队负责不同服务不同AI/人负责不同module
核心理念解耦、隔离解耦、AI注意力管理

本质区别(实现层面)

1. 隔离边界

微服务:进程级隔离

服务A                服务B
[进程1] ──网络──→ [进程2]
  ↓                    ↓
独立内存空间        独立内存空间
  • ✅ 故障隔离:服务B崩溃不影响服务A
  • ✅ 语言自由:A用Go,B用Python
  • ❌ 性能开销:序列化、网络延迟(1-10ms)

AI-Native架构:编译期隔离

┌───────────────────进程───────────────────┐
│                                           │
│  moduleA  ──函数调用──→  moduleB         │
│    ↓                      ↓               │
│  共享地址空间        共享地址空间        │
│                                           │
└───────────────────────────────────────────┘
  • ✅ 性能:零拷贝、直接调用(1-10ns)
  • ✅ 调试:统一的内存空间、gdb一步跟踪
  • ❌ 故障传播:moduleB段错误 → 整个进程挂掉

性能差异:100万倍!

2. 部署复杂度

微服务需要:

  • 容器编排(Kubernetes)
  • 服务发现
  • 负载均衡
  • 配置管理
  • 链路追踪
  • 100+个基础设施组件

AI-Native架构需要:

  • 编译器
  • 链接器
  • 就这!

3. 扩展性

微服务:水平扩展(用户激增 → 加机器)

AI-Native架构:垂直扩展(加CPU/内存)或提取热点module为独立进程

架构定位

这个架构本质是:"单体应用 + 微服务理念"

  • 结构上:单体应用(一个进程)
  • 设计上:微服务思想(边界清晰、接口驱动)

适用场景:

✅ 嵌入式系统(资源受限)
✅ 系统编程(操作系统、数据库)
✅ 高性能场景(网络延迟不能接受)
✅ AI辅助开发(核心诉求)
✅ 小团队(运维能力有限)

❌ 超大规模(需要水平扩展)
❌ 多语言团队
❌ 需要强故障隔离(金融、核电站)

微服务架构的未来演进

我预测:随着AI的智能变得越来越廉价,一部分微服务架构可能会向AI-Native架构演进。

演进的动力

传统微服务的成本

  • 运维100+个基础设施组件(K8s、服务发现、链路追踪...)
  • 网络延迟:每次调用1-10ms
  • 序列化/反序列化开销
  • 分布式系统的复杂度(CAP理论、最终一致性...)

AI时代的变化

  • 代码是cheap的:重构一个service的成本极低
  • module随时可以替换:单体内部也可以模块化
  • AI能处理复杂依赖:只要边界清晰,AI能管理单体内部的模块关系

演进的路径

阶段1:纯微服务(现在)
[服务A] ──网络──→ [服务B] ──网络──→ [服务C]
  进程1               进程2                进程3

优点:故障隔离、水平扩展
缺点:运维复杂、网络开销

阶段2:混合架构(过渡期)
┌────────────────进程1────────────────┐
│  moduleA ──函数调用──→ moduleB      │
│    ↓                         ↓       │
│  [隔离边界]              [隔离边界]   │
└─────────────────────────────────────┘
         │                      │
         └──────网络──────→ 进程2 (服务C)

优点:核心性能敏感部分用module
      需要独立扩展的部分用服务
缺点:架构复杂度增加

阶段3:AI-Native单体(未来趋势)
┌───────────────────────────────────────────┐
│  moduleA → moduleB → moduleC → moduleD   │
│    (编译期隔离,边界清晰)                  │
└───────────────────────────────────────────┘

优点:
- 性能最优(函数调用)
- 运维最简(一个进程)
- AI友好(清晰的模块边界)
- module可以随时替换重构

缺点:
- 需要垂直扩展(加CPU/内存)
- 但CPU/内存越来越便宜了!

哪些场景会先演进?

优先演进到AI-Native的场景

  1. AI辅助开发的团队:已经在用AI写代码,自然选择AI友好的架构
  2. 性能敏感的系统:高频交易、游戏引擎、实时数据处理
  3. 小团队项目:没有专门的运维团队,不想维护K8s
  4. 快速迭代的初创公司:需要频繁重构,代码复用不是瓶颈

继续使用微服务的场景

  1. 超大规模系统:Facebook、Instagram级别(需要水平扩展)
  2. 多语言团队:不同服务用不同语言(Go、Python、Java)
  3. 需要强隔离:金融、核电站、医疗(故障隔离是硬需求)
  4. 遗留系统:已经在微服务上运行,迁移成本太高

本质转变

传统思维:
"代码是昂贵的,所以需要复用"
→ 设计通用服务(UserService、OrderService...)
→ 通过网络调用复用

AI时代思维:
"代码是cheap的,AI注意力是昂贵的"
→ 设计清晰的模块边界
→ 编译期隔离,函数调用
→ module随时可以替换重构

这是技术范式的转移:从"追求运行时的复用"转向"追求AI开发的效率"。


1. 引入依赖注入(DI)容器

问题:手工组装module依赖容易出错。

// main.c - 手工组装(容易遗漏)
Logger* logger = logger_create();
Storage* storage = storage_create();
Network* net = network_create();
network_set_observer(net, logger);
storage_set_observer(storage, logger);
// ...几十个组装代码

改进

// include/di.h
typedef struct DIContainer DIContainer;
void di_register(DIContainer*, const char* name, void* instance);
void* di_resolve(DIContainer*, const char* name);

// main.c
DIContainer* di = di_create();
di_register(di, "logger", logger_create());
di_register(di, "storage", storage_create());

Network* net = network_create(di);  // 自动注入依赖

好处

  • 自动管理依赖关系
  • 测试时注入Mock对象
  • AI不需要记住组装顺序

2. 接口版本管理

问题:接口变更导致旧代码编译失败。

// v1
void logger_log(Logger*, const char* msg);

// v2(破坏性变更)
void logger_log(Logger*, const char* msg, int level);

改进

include/
├── logger/
│   ├── v1.h  # 老接口
│   └── v2.h  # 新接口
└── logger.h  # 默认指向v2

好处:多版本共存、渐进式迁移

3. 生命周期管理

问题:AI生成的代码可能忘记初始化或释放资源。

改进

// include/lifecycle.h
typedef enum {
    LIFECYCLE_INIT,
    LIFECYCLE_START,
    LIFECYCLE_STOP,
    LIFECYCLE_DESTROY
} LifecycleState;

typedef struct {
    void (*on_init)(void);
    void (*on_start)(void);
    void (*on_stop)(void);
    void (*on_destroy)(void);
} LifecycleHooks;

void lifecycle_register(const char* module_name, LifecycleHooks* hooks);
void lifecycle_init_all(void);  // 按依赖顺序初始化
void lifecycle_destroy_all(void);

4. 可观测性内置

统一监控接口

// include/observability.h
void obs_log(const char* module, const char* level, const char* msg);
void obs_metric(const char* module, const char* name, double value);
void obs_trace(const char* module, const char* func);

// AI生成的代码自带可观测性
void network_send(Network* self, const char* data) {
    obs_trace("network", "send");
    // ...
    obs_metric("network", "bytes_sent", strlen(data));
}

5. 插件化架构(可选)

对于频繁变动的module,做成动态插件

project/
├── include/
│   └── plugin.h
├── plugins/
│   ├── logger_plugin.so
│   └── network_plugin.so
// include/plugin.h
typedef struct Plugin {
    const char* name;
    void* (*init)(void);
    void (*destroy)(void*);
} Plugin;

void plugin_load(const char* path);
void* plugin_get(const char* name);

如何保证AI遵循规则?

方案A:编译期检查

# 扫描include/目录,检测违规依赖
make check-dependencies

方案B:AI Prompt工程

给AI的系统提示词:

你在一个严格约束的项目中工作:
1. include/里的头文件不能include其他include/的头文件
2. src/里的代码只能include其对应的include/里的头文件
3. 违反这些规则会导致编译失败

方案C:自动化测试

CI/CD中加入依赖检查:

#!/bin/bash
# 检测循环依赖
python scripts/check_circular_deps.py include/

完整架构示例

project/
├── include/
│   ├── di.h              # 依赖注入
│   ├── lifecycle.h       # 生命周期
│   ├── observability.h   # 可观测性
│   ├── common_types.h    # POD数据结构
│   ├── logger/
│   │   └── v1.h
│   ├── network/
│   │   └── v1.h
│   └── storage/
│       └── v1.h
├── src/
│   ├── core/             # 核心框架(DI、生命周期)
│   ├── logger/           # 实现logger/v1.h
│   ├── network/
│   └── storage/
├── plugins/              # 可选:动态加载模块
├── tests/
│   └── unit/             # 每个module独立测试
├── scripts/
│   └── check_deps.py     # 依赖检查工具
└── api.h                 # 唯一对外接口

核心原则总结

  1. 代码是cheap的,AI注意力是昂贵的

    • 不惜增加代码量来降低每个模块的复杂度
  2. 零循环依赖

    • include/绝对禁止互相包含
    • src/只依赖include/
  3. 依赖倒置

    • 所有接口定义在include/
    • 实现在src/
  4. 动态拆分

    • 没有固定的行数标准
    • 看AI出错率调整边界
  5. 基础设施内置

    • DI容器、生命周期、可观测性
    • 让AI专注于业务逻辑

实践效果预测

AI编码质量提升

指标传统架构AI-Native架构
编译通过率50%85%
修改轮次3-5轮1-2轮
代码行数/module500行150行
内存泄漏率15%3%

开发效率提升

传统方式:
AI生成 → 编译错误 → 修复 → 发现新错误 → 再修复 → ... (5轮)
耗时:2小时

AI-Native方式:
AI生成 → 小调整 → 通过 (1轮)
耗时:20分钟

后续思考

1. 工具支持

能否开发一个IDE插件,自动检测依赖违规?

  • 实时扫描include/目录
  • 高亮显示违规依赖
  • 自动生成依赖图

2. AI模型优化

能否针对这种架构训练专门的模型?

  • 理解零依赖约束
  • 自动生成符合规则的代码
  • 更高的首次编译通过率

3. 度量标准

如何量化"AI注意力成本"?

  • Token消耗(上下文长度)
  • 修改轮数
  • 人类review时间

参考资源

  • 依赖倒置原则(DIP):Robert C. Martin的Clean Architecture
  • 微服务架构:Martin Fowler的Microservices文章
  • AI辅助编程:GitHub Copilot、Claude Code实践

作者:twg2020
发布时间:2026-02-15
技术栈:软件架构、AI辅助编程、C/C++、系统设计
标签:#AI编程 #软件架构 #ClaudeCode #依赖倒置 #微服务

这是我在探索AI辅助编程过程中的架构思考。核心观点是:代码本身不再是瓶颈,AI的注意力才是。 架构设计应该服务于AI的认知特点,而不是传统的工程美学。如果你也在做类似的探索,欢迎交流讨论!

标签: none

添加新评论